| Edward Olney - Geometry - 1872 - 472 pages
...and DB to be compared? 346. COR.. 3. — .The square described on the hypotenuse of a right angled **triangle is equivalent to the sum of the squares described on the other two sides.** DEM.— From Cor. 1, AC" = AB x AD and also CBa = AB x DB. Therefore, adding, AC4 + CB =AB (AD + DB)... | |
| William Chauvenet - Geometry - 1872 - 382 pages
...of the polygons. PROPOSITION X.— THEOREM. 25. The square described upon the hypotenuse of a right **triangle is equivalent to the sum of the squares described on the other two sides.** ia a Let the triangle ABC be right angled at C; then, the square AH, described upon the hypotenuse,... | |
| Charles Davies - Geometry - 1872 - 464 pages
...PROPOSITION XI. THEOREM. CBK The square described on the hypothenuse of a right-angled triangle, is equal **to the sum of the squares described on the other two sides. Let** ABC be a triangle, right-angled at A : then will = Al? + AC\ Construct the square BG on the side BC,... | |
| Benjamin Greenleaf - Geometry - 1873 - 202 pages
...square described on the half A B. BOOK IV. EQ THEOREM IX. 195. The square described on the hypothenuse **of a right-angled triangle is equivalent to the sum...the squares described on the other two sides. Let** ABC be a right-angled M triangle, having the right angle at A . then the square described on the hypothenuse... | |
| Benjamin Greenleaf - Geometry - 1874 - 206 pages
...described on the half A B. E D F G BOOK IV. F E THEOREM IX. 195. The square described on the hypothenuse **of a right-angled triangle is equivalent to the sum...the squares described on the other two sides. Let** ABC be a right-angled triangle, having the right angle at A ; then the square described on the hypothenuse... | |
| Adrien Marie Legendre - Geometry - 1874 - 512 pages
...PROPOSITION XI. THEOREM. The square described on the hypothenuse of a right-angled triangle, is equal **to the sum of the squares described on the other two sides. , Let** ABC be a triangle, right-angled at A : then will SO* = AS2 + AC2. Construct the square BG on the side... | |
| United States Naval Academy - 1874 - 886 pages
...sides. 1. Prove that the square described on the hypothenu.se of a right triangle is ci ; ni valent **to the sum of the squares described on the other two sides.** .">. Prove that a triangular pyramid is one-third of a triangular prism of the samo base and altitnde,... | |
| Bombay city, univ - 1874 - 648 pages
...point without it. 2. Show that if the square described on one of the sides 8 of a triangle be equal **to the sum of the squares described on the other two sides** of it, the anglo contained by these two sides is a right angle. 3. In every triangle the square on... | |
| Education - 1875 - 398 pages
...perimeter is regular. • 3. PROPOSITION. The square described on the hypothenuse of a right angled **triangle is equivalent to the sum of the squares described on the other two sides.** 4. PROPOSITION. If the diagonals of a quadrilateral bisect each other the figure is a parallelogram.... | |
| John Reynell Morell - 1875 - 220 pages
...triangle,* and taking the sums of these areas. THEOREM Vm. The square constructed on the hypothenuse **of a rightangled triangle is equivalent to the sum of the squares** constructed on the sides. Let AC B be a rightangled triangle, with right angle vertex at C ; construct... | |
| |