Books Books The square described on the hypothenuse of a right-angled triangle is equivalent to the sum of the squares described on the other two sides. Elements of Plane Geometry: For the Use of Schools - Page 63
by Nicholas Tillinghast - 1844 - 96 pages ## Proceedings

Scotland free church, gen. assembly - 1847 - 552 pages
...makes the alternate angles equal. 2. If the square described on one of the sides of a triangle be equal to the sum of the squares described on the other two sides, these sides contain a right angle. 3. Divide a given line into two parts, so that the rectangle contained... ## Elements of Geometry: On the Basis of Dr. Brewster's Legendre : to which is ...

James Bates Thomson - Geometry - 1844 - 268 pages
...the other two sides; in other words, BC^AB'-f-AC". Therefore, The square described on the hypolhcnuse of a right-angled triangle, is equivalent to the sum of the squares described on the other two sides. Cor. 1. Hence, by transposition, the square of one of the sides of a right-angled triangle is equivalent... ## Elements of Drawing and Mensuration Applied to the Mechanic Arts: A Book for ...

Charles Davies - Geometrical drawing - 1846 - 254 pages
...triangle equal to ? In every right-angled triangle, the square described on the hypothenuse, is equal to the sum of the squares described on the other two sides. Thus, if ABC be a rightangled triangle, right-angled at C, then will the square D, described on AB,... ## Practical Arithmetic, Uniting the Inductive with the Synthetic Mode of ...

James Bates Thomson - Arithmetic - 1846 - 354 pages
...principle in geometry, that the square described on the hypothenuse of a right-angled triangle, is equal to the sum of the squares described on the other two sides. (Leg. IV. 11. Euc. I. 47.) Thus if the base of the triangle ABC is 4 feet, and the perpendicular 3... ## Higher Arithmetic: Or, The Science and Application of Numbers; Combining the ...

James Bates Thomson - Arithmetic - 1847 - 432 pages
...contains 25 sq. ft. Hence, the square described on the hi/pothenuse of any right-angled triangle, is equal to the sum of the squares described on the other two sides. DBS. Since the square of the hypothenuse BC, is 25, it follows that the , or 5, must be the hypothenuse... ## Higher Arithmetic: Or, The Science and Application of Numbers; Combining the ...

James Bates Thomson - Arithmetic - 1847 - 424 pages
...30. 34967ft-. 371 578. The square described on the hypothenuse of a rightangled triangle, is equal to the sum of the squares described on the other two sides. (Thomson's Legendre, B. IV. 11, Euc. I. 47.) The truth of this principle may be seen from the following... ## Higher Arithmetic; Or, The Science and Application of Numbers: Combining the ...

James Bates Thomson - Arithmetic - 1848 - 434 pages
...575-580.] SQUARE ROOT. 371 578. The square described on the hypothenuse of a rightangled triangle, is equal to the sum of the squares described on the other two sides. (Thomson's Legendre, B. IV. 11, Euc. I. 47.) The truth of this principle may be seen from the following... ## Ticknor's Mensuration, Or, Square and Triangle: Being a Practical and ...

Almon Ticknor - Measurement - 1849 - 156 pages
...D, respectively equal to 0 C, 0 B, and therefore AC, BD, are bisected at the point 0. Fig. 25. 26. The square described on the hypotenuse of a right-angled...sum of the squares described on the other two sides. (Pig. B) Fig. A. Let the triangle ABC be right-angled at A. Having described squares on the three,... ## Elements of Geometry and Trigonometry Translated from the French of A.M ...

Charles Davies - Trigonometry - 1849 - 384 pages
.... X E D ? GI D K PROPOSITION XI. THEOREM. The square described on the hypothenuse of a right angled triangle is equivalent to the sum of the squares described on the other two sides. Let the triangle ABC be right angled at A. Having described squares on the three sides, let fall from A, on the hypothenuse,... 