 | William Findlay Shunk - Railroad engineering - 1890 - 360 pages
...any plane triangle, as the sum of the sides about the vertical angle is to their difference, so is the tangent of half the sum of the angles at the base to the tangent of half their difference. 4. In any plane triangle, as the cosine of half the difference of the angles at the... | |
 | Edward Albert Bowser - Trigonometry - 1892 - 392 pages
...no difference, provided the right order is maintained. 97. Law of Tangents. — In any triangle the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. By Art. 95, a : b = sin A : sin B. By composition... | |
 | Edward Albert Bowser - Trigonometry - 1892 - 196 pages
...no difference, provided the right order is maintained. 57. Law of Tangents. — In any triangle the sum of any two sides is to their difference as the tangent of half the sum, of the opposite angles is to the tangent of half their difference. By Art. 55, a : b = sin A : sin B. By composition... | |
 | Education - 1892 - 754 pages
...solving triangles ? 2. Prove: — In any plane triangle, the sum of the sides including either angle is to their difference as the tangent of half the sum of the two other angles is to the tangent of half their difference. 3. Find the sine of half an angle in terms... | |
 | Alfred Hix Welsh - Plane trigonometry - 1894 - 230 pages
...Л. jj .-. CB + AB : CB - AB : : tan ^ (A + Cf) : tan £ (A - C). Hence, in any plane triangle, the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. Scholium. — The half difference added... | |
 | Ephraim Miller - Plane trigonometry - 1894 - 220 pages
...(3) by — c. In like manner the others may be obtained. 64. THEORKM IV. In any triangle, the sum of two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their differenve. From the fundamental formulae [31], sin... | |
 | Webster Wells - Trigonometry - 1896 - 236 pages
...manner, b : с = sin B : sin C, (48) and с : a = sin С : sin A. (49) 108. /n a»?/ triangle, the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. By (47), a : b = sin A : sin B. Whence... | |
 | William Mitchell Gillespie - Surveying - 1896 - 594 pages
...to each other as the opposite sides. THEOREM H. — In every plane triangle, the sum of two sides u to their difference as the tangent of half the sum of the angles opposite those sides is to the tangent of half their difference. TE1EOBEM III. — In every plnne triangle,... | |
 | Charles Winthrop Crockett - Plane trigonometry - 1896 - 318 pages
...Two Sides and the Included Angle (b, c, a) . First Method. — The sum of any two sides of a triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. For we have b _ sin ß с sin y By composition... | |
 | William Chauvenet - Geometry - 1896 - 274 pages
...proposition is therefore general in its application.* 118. The sum of any two sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. For, by the preceding article, a : b =... | |
| |