 | Nathan Scholfield - 1845 - 896 pages
...B sin. A sin. C sin. B sin. C. 68 PROFOSITION in. In any plane triangle, the sum of any two sides, is to their difference, as the tangent of half the sum of the angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle, then,... | |
 | Nathan Scholfield - Conic sections - 1845 - 244 pages
...proposition, a sin. A.~ c b sin. 68 FROPOSITION III. In any plane triangle, the sum of any two sides, is to their difference, as the tangent of half the sum of the angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle, then,... | |
 | Nathan Scholfield - Conic sections - 1845
...a sin. B sin. A c sin. C sin. B b PROPOSITION III. In any plane triangle, the sum of any two sides, is to their difference, as the tangent of half the sum of the angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle, then,... | |
 | Scottish school-book assoc - 1845 - 278 pages
...6 tan. 4(A — B) opposite to the angles A and B, the expression proves, that the sum of the sides is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference, which is the rule. (7.) Let (AD— DC)... | |
 | John Playfair - Euclid's Elements - 1846 - 332 pages
...radius to the tangent of the difference between either of them and 45°. PROP. IV. THEOR. The sum of any two sides of a triangle is to their difference, as the tangent of half the sum of the angles opposite to those sides, to the tangent of half their difference. Let ABC be any plane triangle ; CA+AB... | |
 | Dennis M'Curdy - Geometry - 1846 - 168 pages
...triangle EFG, BC is drawn parallel to FG the base EC : CF : : EB : BG; that is, the sum of two sides is to their difference, as the tangent of half the sum of the angles at the base ia to the tangent of half their difference. * Moreover, the angles DBF, BFE are halves of the central... | |
 | Jeremiah Day - Logarithms - 1848 - 153 pages
...THE SUM OF THE OPPOSITE ANGLES ; TO THE TANGENT OF HALF THEIR DIFFERENCE. Thus, the sum of AB and AC, is to their difference ; as the tangent of half the sum of the angles ACB and ABC, to the tangent of half then- difference. Demonstration. Extend CA to G, making AG equal... | |
 | Charles Davies - Trigonometry - 1849 - 384 pages
...+c 2 —a 2 ) = R« x -R- x " * Hence THEOREM V. In every rectilineal triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides, to the tangent of half their difference. * For. AB : BC : : sin C : sin A (Theorem... | |
 | Jeremiah Day - Geometry - 1851 - 418 pages
...opposite angles. It follows, therefore, from the preceding proposition, (Alg. 389.) that the sum of any two sides of a triangle, is to their difference ; as the tangent of half the sum of the opposite angles, to the tangent of half their difference. This is the second theorem applied to the... | |
 | Charles William Hackley - Trigonometry - 1851 - 538 pages
...— 6 : : tan £ (A + B) : tan £ (A — B) That is to say, the sum of two of the sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. 76 This proportion is employed when two... | |
| |