 | William Frothingham Bradbury - Geometry - 1872 - 268 pages
...same sine, and BD = a sin. BCD = a sin. C (41) B 102. In any plane triangle, the sum of any two sides is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference. Let ABC (Art. 103) be a plane triangle... | |
 | Charles Davies - Geometry - 1872 - 464 pages
...have the following principle : In any plane triangle, the sum of the sides including either angle, is to their difference, as the tangent of half the sum of the two other angles, is to the tangent of half their difference. The half sum of the angles may be found... | |
 | Cincinnati (Ohio). Board of Education - Cincinnati (Ohio) - 1873 - 352 pages
...the other two sides. Prove it. 5. Prove that in a plain triangle the sum of two sides about an angle is to their difference as the tangent of half the sum of the other two angles is to the tangent of half their diff.rence. 6. One point is accessible and another... | |
 | Aaron Schuyler - Measurement - 1873 - 520 pages
...tan \(A + B) : tan \(A — B). Hence, In any plane triangle, the sum of the sides including an angle is to their difference as the tangent of half the sum of the other tiuo angles is to the tangent of half their difference. We find from the proportion, the equation... | |
 | New York (State). Legislature. Assembly - Government publications - 1873 - 820 pages
...we have the principle. When two sides and their included angles are given : The sum of the two sides is to their difference as the tangent of half the sum of the other two angles is to. the tangent of half their difference. This young man also worked out a problem... | |
 | Boston (Mass.). School Committee - Boston (Mass.) - 1873 - 454 pages
...to the sines of the opposite angles. III. Prove that in any plane triangle the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. IV. In a triangle the side AB = 532. "... | |
 | Harvard University - 1873 - 732 pages
...proportional to the sines of the opposite angles. (4.) The sum of any two sides of a plane triangle ia to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. 4. Two sides of a plane oblique triangle... | |
 | Adrien Marie Legendre - Geometry - 1874 - 512 pages
...have tl1e following principle : In any plane triangle, the sum of the sides including either angle, is to their difference, as the tangent of half the sum of the two other angles, is to the tangent of half their difference. The half sum of the angles may he found... | |
 | William Hamilton Richards - 1875 - 216 pages
...from 180°, E + F = 180° 150° T — 29° 3'. and \ (E + F) = 14° 31' 30". The sum of the two sides is to their difference, as the tangent of half the sum of the angles at the base, to the tangent of half their difference. Ar. co. Log. (e + /) 3922'92 = 6'406347 Log. (e -/) 1769'86... | |
 | Cornell University - 1875 - 1012 pages
...sin'.r=:2cosa;r — 1 = I — 2sinV. 4. Prove that in any plane triangle the sum of cither two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of hall' their difference. 5. Given two sides of a triangle equal... | |
| |