Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Books Books
" The area of the surface of a sphere is four times the area of a great circle. "
Observational Geometry - Page 113
by William Taylor Campbell - 1899 - 240 pages
Full view - About this book

Workshop Mathematics, Part 2

Frank Castle - Mathematics - 1900
...solid ring. — The volume is the area of cross-section multiplied by mean length of ring = 2тгV2A. Surface of a sphere is four times the area of a great circle = 4тгr2, where r denotes the radius of the sphere. Volume of a sphere. — Volume of a sphere is...
Full view - About this book

Science Examinations ... Reports, Etc

1904 - 386 pages
...volumes of the two portions into which the pyramid is divided by the plane B'C'D' ' . (35) 63. Prove that the area of the surface of a sphere is four times the area of a plane central section. A hollow metal shell, bounded by two concentric spheres of radii, 2a, a, respectively,...
Full view - About this book

Plane Trigonometry

Daniel Alexander Murray - 1906 - 472 pages
...semicircle AGB = 2 TT • R • 2 R ; ie area of surface of sphere of radius R = 4 trR2. In words : The area of the surface of a sphere is four times the area of a great circle of the sphere. Definition. A zone of a sphere is a portion of the surface included between two parallel...
Full view - About this book

Essentials of Arithmetic, Oral and Written

John William McClymonds, David Rhys Jones - Arithmetic - 1907 - 352 pages
...down into a cone of the same base and altitude. What part of the stone was cut away ? 368. Spheres. The area of the surface of a sphere is four times the area of a great circle (wr2) of the sphere. The area of the surface of a sphere is equal to the square of the diameter x TT,...
Full view - About this book

Plane [and Spherical] Trigonometry for Colleges and Secondary Schools

Daniel Alexander Murray - Plane trigonometry - 1908
...semicircle AGB = 2 7r • R • 2 R ; ie area of surface of sphere of radius R = 4 ,rR2. In words : The area of the surface of a sphere is four times the area of a great circle of the sphere. Definttion. A zone of a sphere is a portion of the surface included between two parallel...
Full view - About this book

Spherical Trigonometry: For Colleges and Secondary Schools

Daniel Alexander Murray - Spherical trigonometry - 1908 - 132 pages
...of semicircle AGB = 2 TT . R • 2 R; ie area of surface of sphere of radius R = 4 ir.B2. In words : The area of the surface of a sphere is four times the area of a great circle of the sphere. Definition. A zone of a sphere is a portion of the surface included between two parallel...
Full view - About this book

Advanced Arithmetic

John William McClymonds, David Rhys Jones - Arithmetic - 1910 - 336 pages
...down into a cone of the same base and altitude. What part of the stone was cut away ? 368. Spheres. The area of the surface of a sphere is four times the area of a great circle (Trr2) of the sphere. The area of the surface of a sphere is equal to the square of the diameter x...
Full view - About this book

Advanced Arithmetic

John William McClymonds, David Rhys Jones - Arithmetic - 1910 - 338 pages
...into a cone of the same base and altitude. What part of the stone was cut away ? 368. Spheres. Tlie area of the surface of a sphere is four times the area of a great circle (Tr?- 2 ) of the sphere. Tlie area oftlie surface of a sphere is equal to the square of the diameter...
Full view - About this book

Physics

Henry Smith Carhart - 1917 - 478 pages
...area of a circle is the product of 3.1416 (very nearly ^7S) and the square of the radius (A = trr 2) ; the surface of a sphere is four times the area of a circle through its center (A = 4irr2). For other surfaces, see Appendix III. FIGURE 11. — SQUARE...
Full view - About this book

Physics: With Applications

Henry Smith Carhart, Horatio Nelson Chute - Physics - 1917 - 572 pages
...area of a circle is the product of 3.1416 (very nearly if) and the square of the radius (A = irr 2) ; the surface of a sphere is four times the area of a circle through its center (A = 4irr2). For other surfaces, see Appendix III. FIGURE 11. — • SQUARE...
Full view - About this book




  1. My library
  2. Help
  3. Advanced Book Search
  4. Download EPUB
  5. Download PDF