 | Euclid, James Thomson - Geometry - 1845 - 380 pages
...&c. Cor. 1. All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides. For any rectilineal figure ABCDE can be divided into as many triangles as the figure has sides, by... | |
 | Dennis M'Curdy - Geometry - 1846 - 168 pages
...p. 13. (e)p.29; Cor. 1. All the interior angles of any rectilineal figure and four right angles, are equal to twice as many right angles as the figure has sides. For, about a point within the figure, as many triangles may be formed as the figure has sides, each... | |
 | Euclides - 1846 - 272 pages
...There are as many triangles constructed as the figure has sides, and therefore all these angles will be equal to twice as many right angles as the figure has sides (by Prop. 32) ; from these take four right angles, for the angles at the point F (by Cor. 3 Prop. 13),... | |
 | Euclides - 1846 - 292 pages
...QEU COR. 1. All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides. For any rectilineal figure ABCDE can be divided into as many triangles as the figure has sides, by... | |
 | John Playfair - Euclid's Elements - 1846 - 332 pages
...many right angles as the figure has sides, wanting four. For all the angles exterior and interior are equal to twice as many right angles as the figure has sides ; but the exterior are equal to four right angles ; therefore the interior are equal to twice as many... | |
 | Anthony Nesbit - Plane trigonometry - 1847 - 426 pages
...the accuracy of the previous work. Moreover, since the sum of all the interior angles of any polygon is equal to twice as many right angles as the figure has sides, lessened by four ; as the given figure has five sides, the sum of all its interior angles must be 2x5... | |
 | Charles William Hackley - Geometry - 1847 - 248 pages
...sum. Hence it follows that the sum of all the inward angles of the polygon alone, A + B -f- C + D + E, is equal to twice as many right angles as the figure has sides, wanting the said four right angles. QED Corol. 1. In any quadrangle, the sum of all the four inward... | |
 | Education - 1847 - 508 pages
...SECTION I. — 1. All the interior angles of any rectilineal figure, together with four right angles, are equal to twice as many right angles as the figure has sides. 2. Equal triangles, upon equal bases in the same straight line, and towards the same parts, are between... | |
 | Euclides - 1848 - 52 pages
...angles. COR. 1. All the interior angles of any rectilineal figure together with four right angles, are equal to twice as many right angles as the figure has sides. COB. 2. All the exterior angles of any rectilineal figure, made by producing the sides successively... | |
 | Charles Davies - Trigonometry - 1849 - 384 pages
...equal to two right angles, taken as many times, less two, as the polygon has sides (Prop. XXVI.); that is, equal to twice as many right angles as the figure has sides, wanting four right angles. Hence, the interior angles plus four right Let the sides of the polygon... | |
| |