 | Roswell Park - 1847 - 622 pages
...an oblique angled triangle, the sides are proportional to the sines of the opposite angles : also, the sum of any two sides is to their difference, as the tangent of the half sum of the two opposite angles, is to the tangent of their half difference : and finally,... | |
 | Jeremiah Day - Logarithms - 1848 - 153 pages
...THE SUM OF THE OPPOSITE ANGLES ; TO THE TANGENT OF HALF THEIR DIFFERENCE. Thus, the sum of AB and AC, is to their difference ; as the tangent of half the sum of the angles ACB and ABC, to the tangent of half then- difference. Demonstration. Extend CA to G, making AG equal... | |
 | Charles Davies - Trigonometry - 1849 - 384 pages
...2 (/i 2 +c 2 —a 2 ) = R« x -R- x " * Hence THEOREM V. In every rectilineal triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides, to the tangent of half their difference. * For. AB : BC : : sin C : sin A (Theorem III.).... | |
 | Jeremiah Day - Geometry - 1851 - 418 pages
...equal to the sum, and FH to the difference of AC and AB. And by theorem II, (Art. 144.) the sum of the sides is to their difference ; as the tangent of half the sum of the opposite angles, to the tangent of half their difference. Therefore, R : tan (ACH— 45°) : : tan... | |
 | Charles William Hackley - Trigonometry - 1851 - 524 pages
...: tan £ (A + B) : tan ^ (A — B) That is to say, the sum of two of the sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. 76 This proportion is employed when two... | |
 | Adrien Marie Legendre - Geometry - 1852 - 436 pages
...AC :: sin 0 : sin jR THEOEEM II. In any triangle, the sum of the two sides containing either angle, is to their difference, as the tangent of half the sum of the two other angles, to the tangent of half their difference. 22. Let ACB be a triangle: then will AJ3... | |
 | William Chauvenet - 1852 - 268 pages
...proposition is therefore general in its application.* 118. The sum of any two sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. For, by the preceding article, a : b =... | |
 | Charles Davies - Geometry - 1886 - 334 pages
...C : sin B. Theorems. THEOREM 11. In any triangle, the sum of the two sides containing eithe1 angle, is to their difference, as the tangent of half the sum of (he t1eo other angles, to the tangent of half their di/ereMe. Let ACB be a triangle: then will With... | |
 | 1853 - 476 pages
...the sides opposite. 5. Find the value of tang. (a+b). 6. In a plane triangle, show that the sum of two sides is to their difference as the tangent of half the sum is to tangent of half the difference of the angles opposite. 7. Find the sin. \ A, and prove that 1... | |
 | Jeremiah Day - Mathematics - 1853 - 288 pages
...therefore, from the preceding proposition, (Alg. 38'.>.) that the sum of any two sides of a. triangle, is to their difference ; as the tangent of half the sum of tin; opposite angles, to the tangent of half their difference. This is the second theorem npplied to... | |
| |