Books Books The areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles. D c A' D' Hyp. In triangles ABC and A'B'C', ZA = ZA'. To prove AABC = ABxAC. A A'B'C' A'B'xA'C'... First Part of an Elementary Treatise on Spherical Trigonometry - Page 69
by Benjamin Peirce - 1836 - 71 pages ## Elementary Geometry

William Chauvenet - 1893 - 340 pages
...hence AD BC 'AT? A'D' B'C' and we have ARC _ = 'AT? A'B'O' EXERCISE. Theorem. — Two triangles having an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles. Suggestion. Let ADE and... ## An Examination Manual in Plane Geometry

George Albert Wentworth, George Anthony Hill - Geometry - 1894 - 150 pages
...respectively ; show that BA is perpendicular to AC. 4. Assuming that the areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles, prove that the bisector... ## Elements of Geometry: Plane and Solid

John Macnie - Geometry - 1895 - 386 pages
...same diagram, show that rect. A E- (AB+ EBy^T? — Elf. PROPOSITION VIII. THEOREM. 341. Triangles that have an angle of the one equal to an angle of the other, are to each other as the rectangles contained by the sides including those angles. AD c A, D, a' Given:... ## Euclid's Elements of Geometry, Books 1-6; Book 11

Henry Martyn Taylor - Euclid's Elements - 1895 - 708 pages
...the ratios AB to DE and BC to EF. Wherefore, if two triangles &c. COROLLARY. If two parallelograms have an angle of the one equal to an angle of the other, the ratio of the areas of th« parallelograms is equal to the ratio compounded of the ratios of the... ## Numerical Problems in Plane Geometry with Metric and Logarithmic Tables

Joe Garner Estill - Geometry - 1896 - 168 pages
...whatever direction the chord is drawn. 6. Prove the ratio between the areas of two triangles which have an angle of the one equal to an angle of the other. Define area. 7. Define a regular polygon and prove that two regular polygons of the same number of... ## Syllabus of Geometry

George Albert Wentworth - Geometry - 1896 - 68 pages
...trapezoid is equal to the product of the median by the altitude. 374. The areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles. 375. The areas of two similar... ## Numerical Problems in Plane Geometry: With Metric and Logarithmic Tables

Joe Garner Estill - 1896 - 186 pages
...whatever direction the chord is drawn. 6. Prove the ratio between the areas of two triangles which have an angle of the one equal to an angle of the other. Define area. 7. Define a regular polygon and prove that two regular polygons of the same number of... ## Plane Geometry

George D. Pettee - Geometry, Plane - 1896 - 272 pages
...respectively ; show that BA is perpendicular to AC. 4. Assuming that the areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles, prove that the bisector... ## The Elements of Geometry

Henry W. Keigwin - Geometry - 1897 - 250 pages
...triangle with two given lines in the plane ? (1893.) 14. Assuming that the areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles, prove that the bisector... 