 | Benjamin Peirce - Plane trigonometry - 1845 - 498 pages
...triangle. j ¿ , C> ~! ' ' Ans. The question is impossible. 81. Theorem. The sum of two sides of a triangle is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference. [B. p. 13.] Proof. We have (fig. 1.) a:... | |
 | Benjamin Peirce - Plane trigonometry - 1845 - 449 pages
...solve the triangle. -4n'. The question is impossible. 81. Theorem. The sum of two sides of a triangle is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference. [B. p. 13.] Proof. We have (fig. 1.) a... | |
 | Euclid, James Thomson - Geometry - 1845 - 380 pages
...proposition is a particular case of this PROP. III. THEOR. — The sum of any two sides of a triangle is to their difference, as the tangent of half the sum of the angles opposite to those sides, is to the tangent of half their difference. Let ABC be a triangle,... | |
 | Nathan Scholfield - Conic sections - 1845
...a sin. B sin. A c sin. C sin. B b PROPOSITION III. In any plane triangle, the sum of any two sides, is to their difference, as the tangent of half the sum of the angles opposite to them, is to the tangent of half their difference. Let ABC be any plane triangle,... | |
 | John Playfair - Euclid's Elements - 1846 - 332 pages
...BC is parallel to FG, CE : CF : : BE : BG, (2. 6.) that is, the sum of the two sides of the triangle ABC is to their difference as the tangent of half the sum of the angles opposite to those sides to the tangent of half their difference. PROP. V. THEOR. If a perpendicular... | |
 | Dennis M'Curdy - Geometry - 1846 - 168 pages
...triangle EFG, BC is drawn parallel to FG the base EC : CF : : EB : BG; that is, the sum of two sides is to their difference, as the tangent of half the sum of the angles at the base ia to the tangent of half their difference. * Moreover, the angles DBF, BFE are... | |
 | Jeremiah Day - Logarithms - 1848 - 153 pages
...THE SUM OF THE OPPOSITE ANGLES ; TO THE TANGENT OF HALF THEIR DIFFERENCE. Thus, the sum of AB and AC, is to their difference ; as the tangent of half the sum of the angles ACB and ABC, to the tangent of half then- difference. Demonstration. Extend CA to G, making... | |
 | Charles Davies - Trigonometry - 1849 - 384 pages
...+c 2 —a 2 ) = R« x -R- x " * Hence THEOREM V. In every rectilineal triangle, the sum of two sides is to their difference as the tangent of half the sum of the angles opposite those sides, to the tangent of half their difference. * For. AB : BC : : sin C : sin... | |
 | Sir Henry Edward Landor Thuillier - Surveying - 1851 - 828 pages
...C : AB : : the Sine of A : BC, etc. QED H THEO. II. In any plane triangle ABC, the sum of the tivo given sides AB and BC, including a given angle ABC, is to their difference, as theJangent of half the sum of the two unknown angles A and C is to the tangent of half their difference.... | |
 | Charles William Hackley - Trigonometry - 1851 - 524 pages
...: tan £ (A + B) : tan ^ (A — B) That is to say, the sum of two of the sides of a plane triangle is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference. 76 This proportion is employed when two... | |
| |