# Mathematics, Volume 1

U.S. Government Printing Office, 1951 - Mathematics

### Contents

 CHAPTER 1 Common fractions 22 CHAPTER 4 73 CHAPTER 5 96 CHAPTER 6 116 CHAPTER 7 131 CHAPTER 8 151
 CHAPTER 9 165 CHAPTER 10 189 CHAPTER 11 209 Answers to exercises 223 Tables for reference 246 Index 265

### Popular passages

Page 247 - Cubic Measure 1728 cubic inches (cu. in.) =1 cubic foot (cu. ft.) 27 cubic feet = 1 cubic yard (cu. yd.) 128 cubic feet = 1 cord (cd...
Page 248 - LIQUID MEASURE 4 gills (gi.) = 1 pint (pt.) 2 pints = 1 quart (qt...
Page 251 - SURFACE too square millimeter's (sq. mm.) = 1 square centimeter (sq. cm.) 100 square centimeters — 1 square decimeter (sq. dm.) 100 square decimeters = 1 square meter (sq. m.) 100 square meters =- 1 square dekameter (sq. Dm.) 100 square dekameters = 1 square hektometer (sq.
Page 90 - Measures of Length 10 millimeters (mm) =1 centimeter cm 10 centimeters =1 decimeter dm 10 decimeters =1 meter m 10 meters =1 dekameter Dm 10 dekameters =1 hektometer Hm 10 hektometers =1 kilometer Km...
Page 249 - TABLE. 10 Mills (m.) = 1 Cent . . ct. 10 Cents = 1 Dime . . d. 10 Dimes = 1 Dollar . \$. 10 Dollars = 1 Eagle . E.
Page 26 - To reduce a mixed number to an improper fraction, — RULE : Multiply the whole number by the denominator of the fraction, to the product add the numerator, and write the result over the denominator.
Page 211 - ... equal to the square root of the numerator divided by the square root of the denominator.
Page 251 - Volume 1,000 cubic millimeters (mm3) =1 cubic centimeter cm3 1,000 cubic centimeters =1 cubic decimeter dm3 1,000 cubic decimeters =1 cubic meter m3 Measures of Capacity 10 milliliters (ml) =1 centiliter cl 10 centiliters =1 deciliter dl 10 deciliters =1 liter 1 10 liters =1 dekaliter Dl 10 dekaliters =1 hektoliter HI 10 hektoliters =1 kiloliter Kl NOTE — The liter is equal to the volume occupied by 1 cubic decimeter.
Page 193 - A', ZB = Z B', ZC = Z C". The first two statements cannot be true, for the sum of the angles of the two triangles would exceed four right angles. Therefore, two angles of one triangle are equal to two angles of the other.
Page 216 - In a right triangle the square of the hypotenuse equals the sum of the squares of the other two sides or legs.