## Elements of Algebra: On the Basis of M. Bourdon, Embracing Sturm's and Horner's Theorems : and Practical Examples |

### Contents

13 | |

15 | |

28 | |

35 | |

41 | |

49 | |

55 | |

61 | |

205 | |

211 | |

217 | |

223 | |

234 | |

242 | |

250 | |

260 | |

70 | |

77 | |

83 | |

96 | |

103 | |

110 | |

117 | |

125 | |

128 | |

133 | |

136 | |

143 | |

155 | |

162 | |

269 | |

283 | |

289 | |

302 | |

312 | |

326 | |

335 | |

342 | |

349 | |

355 | |

362 | |

371 | |

379 | |

392 | |

### Other editions - View all

### Common terms and phrases

algebraic expression algebraic quantities approximating fraction arithmetical arithmetical progression becomes called co-efficient contrary signs cube root decimal places deduce denote the number derived polynomial Divide dividend entire number example exponent extract the square figures Find the factors Find the square find the values following RULE formula fourth fractional unit given equation given number gives greatest common divisor hence indicated inequality irreducible fraction last term leading letter least common multiple logarithm mixed quantity monomial multiplicand and multiplier negative roots nth power nth root number of terms obtain operation perfect square positive roots preceding problem proposed equation quotient radical sign real roots remainder required root required to find result second degree second member second term simplest form square root substituted subtract suppose supposition take the equation taken third unknown quantity whence whole number write

### Popular passages

Page 174 - Find the value of one of the unknown quantities, in terms of the other and known quantities...

Page 290 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

Page 286 - The logarithm of a number is the exponent of the power to which it is necessary to raise a fixed number, in order to produce the first number.

Page 117 - The first ten numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Roots.

Page 136 - Resolve the quantity under the radical sign into two factors, one of which is the greatest perfect power of the same degree as the radical.

Page 200 - RULE I. Separate the given number into periods. of three figures each, beginning at the right hand ; the left hand period will often con tain less than three places of figures.

Page 100 - If A and B together can perform a piece of work in 8 days, A and c together in 9 days, and B and c in 10 days, how many days will it take each person to perform the same work alone.

Page 62 - Subtract the numerator of the subtrahend from the numerator of the minuend, and place the difference over the common denominator. EXAMPLES FOR PRACTICE.

Page 154 - B, departed from different places at the same time, and travelled towards each other. On meeting, it appeared that A had travelled 18 miles more than B ; and that A could have gone B's journey in 15| days, but B would have been 28 days in performing A's journey. How far did each travel ? Ans.

Page 222 - Consequently, teueя the index of the radical is divisible by the exponent of the power to which it is to be raised, perform the division, leaving the quantity under the radical sign unchanged.