Plane Trigonometry ...

Front Cover

From inside the book

Common terms and phrases

Popular passages

Page 9 - Radian is the angle subtended, at the centre of a circle, by an arc equal in length to the radius...
Page 18 - The square described on the hypothenuse of a rightangled triangle is equal to the sum of the squares described on the other two sides.
Page 1 - Mr Smith's Work is a most useful publication. The Rules are stated with great clearness. The Examples are well selected and worked cut with just sufficient detail without being encumbered by too minute explanations; and there prevails throughout it that just proportion of theory and practice, which is the crowning excellence of an elementary work.
Page 22 - The author has endeavoured to connect the history of the New Testament Canon with the growth and consolidation of the Church, and to point out the relation existing between the amount of evidence for the authenticity of its component parts, and the whole mass of Christian literature.
Page 4 - Mathematics. Each chapter is followed by a set of Examples: those which are entitled Miscellaneous Examples, together with a few in some of the other sets, may be advantageously...
Page 221 - From eight times the chord of half the arc, subtract the chord of the whole arc, and divide the remainder by 3, and the quotient will be the length of the arc, nearly.
Page 93 - The logarithm of any power, integral or fractional, of a number is equal to the product of the logarithm of the number by the index of the power. For let m = a"; therefore m' = (a")
Page 94 - ... is some number between — 2 and — 3 ; that is, — 3 plus a fraction ; and so on. 5. In the common system, as the logarithms of all numbers which are not ^exact powers of 10 are incommensurable with those numbers, their values can only be obtained approximately, and are expressed by decimals. 6. The integral part of any logarithm is called the CHARACTERISTIC, and the decimal part is sometimes called the MANTISSA.
Page 51 - To express the cosine of the sum of two angles in terms of the sines and cosines of the angles themselves.

Bibliographic information