Elements of Geometry...: Translated from the French for the Use of the Students of the University at Cambridge, New England

Front Cover
Hilliard and Metcalf, 1825 - Geometry - 224 pages
0 Reviews
Reviews aren't verified, but Google checks for and removes fake content when it's identified

What people are saying - Write a review

We haven't found any reviews in the usual places.

Selected pages

Other editions - View all

Common terms and phrases

Popular passages

Page 43 - The square of the hypothenuse is equal to the sum of the squares of the other two sides ; as, 5033 402+302.
Page 3 - If two triangles have the three sides of the one equal to the three sides of the other, each to each, the triangles are congruent.
Page 4 - Hence a straight line drawn from the vertex of an isosceles triangle, to the middle of the base, is perpendicular to that base, and divides the vertical angle into two equal parts.
Page 16 - CIRCLE is a plane figure bounded by a curved line, all the points of which are equally distant from a point within called the centre; as the figure ADB E.
Page 58 - The perimeters of two regular polygons of the same number of sides, are to each other as their homologous sides, and their areas are to each other as the squares of those sides (Prop.
Page 158 - CD, &c., taken together, make up the perimeter of the prism's base : hence the sum of these rectangles, or the convex surface of the prism, is equal to the perimeter of its base multiplied by its altitude.
Page 32 - The sum of the squares on the sides of a parallelogram is equal to the sum of the squares on the diagonals.
Page 142 - If two triangles have two sides and the inchtded angle of the one respectively equal to two sides and the included angle of the other, the two triangles are equal in all respects.
Page 136 - The sum of the three sides of a spherical triangle is less than the circumference of a great circle. Let ABC be any spherical triangle; produce the sides AB, AU, till they meet again in D.
Page 154 - ABCDE, and equal in altitude to the cylinder, is said to be inscribed in the cylinder, or the cylinder to be circumscribed about the prism.

Bibliographic information