Plane Geometry: And Supplements |
From inside the book
Results 1-3 of 91
Page 43
... bisects AB ; E bisects BC . A C Con . AD = CE 3. Hyp . ZUWY = ∠WYR , Y R S WZ bisects ZUWY , XY bisects ZWYR . Z X T U Con . ∠XYW = ZYWZ W 4. Hyp . 21 and 28 are supplementary . L Con . 2 = 28 2 T1 F G 5. Нур . 21 and 28 are 34 ...
... bisects AB ; E bisects BC . A C Con . AD = CE 3. Hyp . ZUWY = ∠WYR , Y R S WZ bisects ZUWY , XY bisects ZWYR . Z X T U Con . ∠XYW = ZYWZ W 4. Hyp . 21 and 28 are supplementary . L Con . 2 = 28 2 T1 F G 5. Нур . 21 and 28 are 34 ...
Page 55
... bisects EG . △ HEFAKGF H K E G F 2. Нур . M bisects LN . L R M bisects PR . 1 2 Con . APML ≦ △ NMR M P N 3. Нур . RS = ST R SQ bisects TSR . Con . AQSR ≦ △ QST 1 S Q 2 Note . SQ = SQ . For authority you may 4. Нур . write Identical ...
... bisects EG . △ HEFAKGF H K E G F 2. Нур . M bisects LN . L R M bisects PR . 1 2 Con . APML ≦ △ NMR M P N 3. Нур . RS = ST R SQ bisects TSR . Con . AQSR ≦ △ QST 1 S Q 2 Note . SQ = SQ . For authority you may 4. Нур . write Identical ...
Page 387
... bisects COE , and 26 = 25 , prove CF = НЕ . F D 4. Let AB1 DF , Z1 = Z2 , BC = BE , CA E and B bisect DF . ( a ) ... bisects AC A E and Z1 = ∠2 , then BE = BD . 1 3 B X 8. If BX bisects ∠DBE , BE = BD , BX | AC , and B bisects AC ...
... bisects COE , and 26 = 25 , prove CF = НЕ . F D 4. Let AB1 DF , Z1 = Z2 , BC = BE , CA E and B bisect DF . ( a ) ... bisects AC A E and Z1 = ∠2 , then BE = BD . 1 3 B X 8. If BX bisects ∠DBE , BE = BD , BX | AC , and B bisects AC ...
Contents
g The optional units from analytic geometry are included for three | 1 |
LinesAnglesPlanes | 11 |
W W | 24 |
Copyright | |
13 other sections not shown
Other editions - View all
Common terms and phrases
ABCD acute angle adjoining figure altitude angle formed angles are equal apothem bisector bisects central angle chord conclusion congruent Construct converse coplanar corresponding sides diagonals diameter dihedral Draw drawn equal circles equidistant equilateral triangle exercises extended exterior angle figure for Ex Find frustum geometry given hypotenuse Hypothesis Informal proof inscribed intersect isosceles trapezoid isosceles triangle kind of angle lateral area length locus of points mean proportional measure meeting mid-point opposite sides parallel parallelogram perimeter perpendicular perpendicular-bisector Plan plane plane geometry Post postulate prism Prove pyramid quadrilateral radii radius ratio rectangle regular polygon rhombus right angle right circular right triangle secant segment similar sphere square Statements straight line Suggestion tangent theorem trapezoid trihedral angle vertex vertical angles Нур