# Elements of Surveying and Leveling; with Descriptions of the Instruments, and the Necessary Tables

A.S.Barnes, 1871 - Surveying - 270 pages
0 Reviews
Reviews aren't verified, but Google checks for and removes fake content when it's identified

### What people are saying -Write a review

We haven't found any reviews in the usual places.

### Popular passages

Page 56 - ... the square of the hypothenuse is equal to the sum of the squares of the other two sides.
Page 12 - The logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
Page 15 - The minutes in the left-hand column of each page, increasing downwards, belong to the degrees at the top ; and those increasing upwards, in the right.hand column, belong to the degrees below.
Page 37 - The circumference of every circle is supposed to be divided into 360 equal parts, called degrees ; and each degree into 60 equal parts, called minutes ; and each minute into 60 equal parts, called seconds ; and these into thirds, etc.
Page 12 - The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor.
Page 10 - When a number lies between 1 and 10, its logarithm lies between 0 and 1; that is, it is equal to 0, plus a decimal; if a number lies between 10...
Page 9 - The logarithm of a number is the exponent of the power to which it is necessary to raise a fixed number, in order to produce the first number.
Page 11 - The logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers.
Page 130 - MC; hence, the double meridian distance of a course is equal to the double meridian distance of the preceding course, plus the departure of that course, plus the departure of the course itself : if .there is no preceding course, the first two terms become zero.
Page 38 - The secant of an arc is the line drawn from the centre of the circle through one extremity of the arc, and limited by the tangent passing through the other extremity. Thus, 00 is the secant of the arc AB.