## Elementary Trigonometry, Plane and Spherical |

### Other editions - View all

Elementary Trigonometry: Plane and Spherical (Classic Reprint) Edwin Pliny Seaver No preview available - 2017 |

Elementary Trigonometry: Plane and Spherical (Classic Reprint) Edwin Pliny Seaver No preview available - 2017 |

### Common terms and phrases

A-sin A+B)+log A₁ abscissa acute angle adjacent angle algebraic angle opposite angle XOA axis B₁ B₂ C₁ C₁-log C₂ circle computed convex angle coördinates cos A sin cos² cosecant cosine cotangent decreases denoted distance drawing drawn equal equations example figure Find the angles find the functions Form formulas fourth quadrant geometric Given one side given side Given two sides gives hypothenuse inches included angle less than 180 log cos log cot log csc log sec log sin Napier's natural functions opposite angle opposite side opposite the former ordinate perpendicular polygon positive or negative projecting angle ratios regular polygon right triangles rods sec² secant second quadrant sides measure sin A sin sin² sine solution spherical triangle substitution Table tangent third quadrant Third side tion tive triangle measure trigonometric functions values vertex

### Popular passages

Page x - In any plane triangle, the sum of any two sides is to their difference, as the tangent of half the sum of the opposite angles is to the tangent of half their difference.

Page 182 - I. The sine of the middle part is equal to the product of the tangents of the adjacent parts.

Page 148 - Two sides of a triangle, and the angle opposite one of them, being given, to describe the triangle. Let A and B be the given sides, and C the given angle.

Page 144 - The area of a triangle is equal to the product of its three sides divided by four times the radius of its circumscribed circle.

Page 166 - That is, the sines of the sides of a spherical triangle are proportional to the sines of the opposite angles.

Page 167 - The extremities of that diameter of a sphere which is perpendicular to the plane of a circle are called the poles of that circle.

Page 23 - If 2 men start from the same place and travel in opposite directions, one at the rate of 4 miles an hour, and the other at the rate of 5 miles an hour, how far apart will they be at the end of 1 hour ? At the end of 2 hours ? 5 hours?

Page 169 - C) + sin B sin C(— cos a). ... cos A = — cos B cos C + sin B sin C cos a. (3) Similarly, cos B = — cos C cos A + sin C sin A cos b, cos C = — cos A cos B + sin A sin B cos c.

Page 128 - CB : CA : : sin A : sin B. For, with A as a centre, and AD equal to the less side...