Elements of Geometry and Trigonometry |
From inside the book
Results 1-5 of 60
Page 24
Then , in the two triangles BAG , DEF , the angles B and E are equal , being right angles , the side BA - ED by hypothesis , and the side BG = EF by construction : consequently , AG - DF ( Prop . V. Cor . ) . But , by hypothesis AC - DF ...
Then , in the two triangles BAG , DEF , the angles B and E are equal , being right angles , the side BA - ED by hypothesis , and the side BG = EF by construction : consequently , AG - DF ( Prop . V. Cor . ) . But , by hypothesis AC - DF ...
Page 32
angles , is equal to twice as many right angles as the polygon has sides , and consequently , equal to the sum of the interior angles plus the exterior angles . Taking from each the sum of the interior angles , and there remains the ...
angles , is equal to twice as many right angles as the polygon has sides , and consequently , equal to the sum of the interior angles plus the exterior angles . Taking from each the sum of the interior angles , and there remains the ...
Page 33
moreover , the side DB is common , and the side AB = DC ; hence the triangle ABD is equal to the triangle DBC ( Prop . V. ) ; therefore , the side AD is equal to BC , the angle ADB DBC , and consequently AD is parallel to BC ; hence the ...
moreover , the side DB is common , and the side AB = DC ; hence the triangle ABD is equal to the triangle DBC ( Prop . V. ) ; therefore , the side AD is equal to BC , the angle ADB DBC , and consequently AD is parallel to BC ; hence the ...
Page 40
M N Let M and N be any two magnitudes , and . and be like m m parts of each : then will Let then will and m N For , it is obvious that Mx ( N ) = Nx ( M ± ( M + M ) since m N.M Consequently , the four quanm each is cqual to M.N ± tities ...
M N Let M and N be any two magnitudes , and . and be like m m parts of each : then will Let then will and m N For , it is obvious that Mx ( N ) = Nx ( M ± ( M + M ) since m N.M Consequently , the four quanm each is cqual to M.N ± tities ...
Page 41
In all cases , the same chord FG belongs to two arcs , FGH , FEĠ , and consequently also to two segments : but the smaller one is always meant , unless the contrary is expressed . D * An inscribed triangle is one which , like BAC ...
In all cases , the same chord FG belongs to two arcs , FGH , FEĠ , and consequently also to two segments : but the smaller one is always meant , unless the contrary is expressed . D * An inscribed triangle is one which , like BAC ...
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Common terms and phrases
ABCD adjacent altitude base become Book called centre chord circle circumference circumscribed common cone consequently contained Cosine Cotang cylinder described determine diameter difference distance divided draw drawn equal equations equivalent expressed extremities faces feet figure follows formed four frustum give given gles greater half hence homologous hypothenuse included inscribed intersection less let fall logarithm manner means measured meet middle multiplied number of sides opposite parallel parallelogram pass perpendicular plane polygon prism PROBLEM Prop proportional PROPOSITION pyramid quadrant quantities radii radius ratio reason rectangle regular remaining right angles Scholium segment sides similar Sine solid solid angle sphere spherical triangle square straight line suppose taken Tang tangent THEOREM third triangle triangle ABC unit vertex whole