## First Lessons in Geometry: With Practical Applications in Mensuration, and Artificers' Work and Mechanics |

### From inside the book

Page 163

...

...

**pyramid**the**slant height**being 20 feet and each side of the base 3 feet . Ans . 90**sq . ft**. 3. What is the entire surface of a regular**pyramid whose**...**convex surface of the frustum**of a ...**How many square feet**are PART III . - SECTION II . Page 164

...

...

**How many square feet are there in the convex**sur- face of the**frustum of a square pyramid**,**whose slant height**...**surface of the frustum**of a heptagonal pyramid**whose slant height**is 55 feet , each side of the lower base 8 feet , and each ...### Other editions - View all

### Common terms and phrases

14 feet 20 feet ABCD altitude breadth called circle whose diameter circular sector circumfer circumference cone convex surface cubic feet cubic foot cumference cylinder decimal diagonal distance divide draw equilateral triangle EXAMPLES Explain the manner feet 6 inches figure find the area find the solidity frustum girt given angle given line given point heptagon hypothenuse inscribed square intersect line be drawn linear unit manner of inscribing measure Mensuration of Surfaces number of square parallel planes parallelogram pentagon perpendicular place one foot Practical Geometry.-Instruments Practical Geometry.-Problems prism PROBLEM protractor pyramid quadrilateral radius rectangle regular polygon Required the area rhombus right angled triangle Round Bodies RULE scale of chords scale of equal secant line segment similar polygons similar triangles slant height solid content solid feet Solids bounded specific gravity sphere square feet square rods square yards straight line tangent timber trapezoid

### Popular passages

Page 35 - If two triangles have two angles and the included side of the one, equal to two angles and the included side of the other, each to each, the two triangles will be equal.

Page 20 - Every circumference of a. circle, whether the circle be large or small, is supposed to be divided into 360 equal parts called degrees. Each degree is divided into 60 equal parts called minutes, and each minute into 60 equal parts called seconds.

Page 32 - The area of a rectangle is equal to the product of its base and altitude. Given R a rectangle with base b and altitude a. To prove R = a X b. Proof. Let U be the unit of surface. .R axb U' Then 1x1 But - is the area of R.

Page 82 - A zone is a portion of the surface of a sphere, included between two parallel planes which form its bases.

Page 142 - From eight times the chord of half the arc, subtract the chord of the whole arc, and divide the remainder by 3, and the quotient will be the length of the arc, nearly.

Page 84 - The convex surface of a cylinder is equal to the circumference of its base multiplied by its altitude.

Page 35 - If two triangles have two sides and the included angle of the one, equal to two sides and the included angle of the other, each to each, the two triangles will be equal in all their parts." Axiom 1. "Things which are equal to the same thing, are equal to each other.

Page 41 - Similar figures, are those that have all the angles of the one equal to all the angles of the other, each to each, and the sides about the equal angles proportional.

Page 36 - The angles opposite the equal sides of an isosceles triangle are equal.

Page 20 - For this purpose it is divided into 360 equal parts, called degrees, each degree is divided into 60 equal parts called minutes, and each minute into 60 equal parts called seconds. The degrees, minutes, and seconds, are marked thus, °, ', " ; and 9° 18' 10", are read, 9 degrees, 18 minutes, and 10 seconds.