If any number of quantities are proportional, any antecedent is to its consequent as the sum of all the antecedents is to the sum of all the consequents. Let a : b = c : d = e :f Now ab = ab (1) and by Theorem I. An Elementary Geometry - Page 30by William Frothingham Bradbury - 1872 - 110 pagesFull view - About this book
| Alexander Malcolm - Arithmetic - 1718 - 396 pages
...middle Terms are the fame. Propofoion 4th, IF four (or more) Numbers arc in Geometrical Proportion; the Sum of all the Antecedents is to the Sum of all the Confequents, in the fame Rath, as any one of thefe Antecedents is to its Confequent. Example, If it... | |
| Alexander Malcolm - Algebra - 1730 - 700 pages
...that b— a :/— a: : л : t — l::b: s — a. Thus; Of any Number of lîmilar and equal Ratios, the Sum of all the Antecedents is to the Sum of all the Confequents as any one of the Antecedents to its Confequent (by Thetr. IV. Ceroll. y: Bot in cafe of... | |
| Isaac Dalby - Mathematics - 1806 - 526 pages
...proportional quantities, Then either antecedent, is to its consequent, as the sum of all the antecedents, to the sum of all the consequents. Let a : b :: c : d : :f:g : Tiien a : b : : c : d, hence ad = be a- * •••fg "g = bf Therefore ad + ag = be + bf... | |
| John Dougall - 1810 - 554 pages
...which each partner has contributed. From the nature of proportionals it follows that of any series, the sum of all the antecedents is to the sum of all the consequents, as each antecedent is to its consequent : that is, that the sum of all the shares is to the sum of... | |
| Charles Hutton - Mathematics - 1811 - 406 pages
...THEOREM LXXII. If any Number of Quantities be Proportional, then any one of the Antecedents will be to its Consequent, as the Sum of all the Antecedents is to the Sum of all the Consequents. LET A : B : : OTA : »;B : : «A : »B, &c ; then will - — A : B : : A + '»A -f nA. : : B + mz + «B, &c.... | |
| Charles Hutton - Mathematics - 1812 - 622 pages
...THEOREM LXXII. If any Number of Quantities be Proportional, then any one of the Antecedents will be to its Consequent, as the Sum of all the Antecedents is to the Sum of all the Consequents. LET A : B : : MA : »>B : : "A : HB, Sec ; then will A : D : : A + ntA + «A : : B -f m& + na, See. B -f- «B... | |
| John Dougall - Encyclopedias and dictionaries - 1815 - 514 pages
...contributed to that,stock. From the nature of proportional quantities it follows that in any number the smh of all the antecedents is to the sum of all the consequents, as each antecedent is to its consequent : or in other words that the sum of all the shares is to the... | |
| Sir John Leslie - Geometry - 1817 - 456 pages
...number of proportionals, as one antecedent is to its consequent, so is the sum of all the antecedents to the sum of all the consequents. Let A : B : : C : D : : E : F : : G : H; then A : B : : A+C+E+G : B+D+F+H. Because A : B : : C : D, (V. 6.) AD = BC; and, since A... | |
| Charles Hutton - Mathematics - 1822 - 616 pages
...THEOREM LXXII. If any Number of Quantities be Proportional, then any one of the Antecedents will be to its Consequent, as the Sum of all the Antecedents is to the Sum of all the Consequents. LET A : B : : mA : mB : : nA : UB, &c ; then will ---- A : B ;; A-{-n»Af-ftA ;; B+ms-4-nB, &c. A+»nA+nA A For... | |
| Etienne Bézout - Mathematics - 1824 - 238 pages
...purpose is founded upon the principle established in article (186), that if many equal ratios are given, the sum of all the antecedents is to the sum of all the consequents, as one antecedent is to its consequent. From this principle we deduce the following example. EXAMPLE... | |
| |