Plane Geometry |
From inside the book
Results 1-3 of 66
Page 68
... STATEMENTS REASONS 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . .. In AACD and ABCD : AC = BC . ✓ 1. Why ? AD = BD . 2. Why ? CD = CD . 3. Why ? 4. Why ? 24 . 5. Why ? AACD ABCD . . 23 = AACE ABCE . .. AE ? Also ≤1 = = ? 21 and 2 are rt ...
... STATEMENTS REASONS 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . .. In AACD and ABCD : AC = BC . ✓ 1. Why ? AD = BD . 2. Why ? CD = CD . 3. Why ? 4. Why ? 24 . 5. Why ? AACD ABCD . . 23 = AACE ABCE . .. AE ? Also ≤1 = = ? 21 and 2 are rt ...
Page 69
... REASONS 1. What postulates ? 2. Why possible ? 3. Why possible ? Statement . CD is the perpendicular - bisector of AB . Plan . Use § 67 , p . 68 . Proof : STATEMENTS REASONS 12 1 . Draw CA , CB , DA , and DB . 2 . CA = CB . Also DA = DB ...
... REASONS 1. What postulates ? 2. Why possible ? 3. Why possible ? Statement . CD is the perpendicular - bisector of AB . Plan . Use § 67 , p . 68 . Proof : STATEMENTS REASONS 12 1 . Draw CA , CB , DA , and DB . 2 . CA = CB . Also DA = DB ...
Page 111
... STATEMENTS REASONS 1 . Let R bisect AG and S bisect BG . Draw ED , DS , SR , and RE . 1. Why ? 2 . In AACB , ED = AB , and ED || AB . 2. § 130 . 3 . In AAGB , RS = AB , and RS || AB . 3. Why ? 4 . .. = ED RS , and ED || RS . 4. Why ...
... STATEMENTS REASONS 1 . Let R bisect AG and S bisect BG . Draw ED , DS , SR , and RE . 1. Why ? 2 . In AACB , ED = AB , and ED || AB . 2. § 130 . 3 . In AAGB , RS = AB , and RS || AB . 3. Why ? 4 . .. = ED RS , and ED || RS . 4. Why ...
Other editions - View all
Common terms and phrases
AABC ABCD ADDITIONAL EXERCISES ADEF adjoining figure altitude angle formed angles are equal apothem ARST AXYZ base angles bisector bisects central angle chord circumscribed conclusion corresponding sides cuts diagonals diameter Draw drawn equal angles equal circles equal sides equidistant equilateral triangle EXERCISES FOR CHAPTER extended exterior angle figure for Ex Find the area geometry hypotenuse Hypothesis inscribed inscribed angle intersect isosceles trapezoid isosceles triangle Locate locus of points mean proportional measure median meeting AC mid-point opposite sides parallelogram perimeter perpendicular perpendicular-bisector Plan plane Proof Prove pupil quadrilateral radii radius ratio rectangle regular hexagon regular polygon rhombus right angle right triangle secant similar triangles square STATEMENTS REASONS straight line Suggestion tangent theorem vertex angle vertices XYZW ZAOB