Elements of Geometry and Trigonometry |
From inside the book
Page 12
... when they are equal in measure . When they may be so placed as to coincide through- out their whole extent , they are equal in all their parts . ELEMENTS OF GEOMETRY . BOOK I. ELEMENTARY PRINCIPLES . DEFINITIONS 12 GEOMETRY .
... when they are equal in measure . When they may be so placed as to coincide through- out their whole extent , they are equal in all their parts . ELEMENTS OF GEOMETRY . BOOK I. ELEMENTARY PRINCIPLES . DEFINITIONS 12 GEOMETRY .
Page 23
... coincide throughout their whole extent , and form one and the same line . Let A and B be two points common to two lines : then will A the lines coincide throughout . Between A and B they must E B C D coincide ( A. 11 ) . Suppose , now ...
... coincide throughout their whole extent , and form one and the same line . Let A and B be two points common to two lines : then will A the lines coincide throughout . Between A and B they must E B C D coincide ( A. 11 ) . Suppose , now ...
Page 25
... coincide with the vertex F ; consequently , the side BC will coincide with the side EF ( A. 11 ) . The two triangles , therefore , coincide throughout , and are consequently equal in all their parts ( I. , D. 14 ) ; which was to be ...
... coincide with the vertex F ; consequently , the side BC will coincide with the side EF ( A. 11 ) . The two triangles , therefore , coincide throughout , and are consequently equal in all their parts ( I. , D. 14 ) ; which was to be ...
Page 26
... coincide with the vertex F ; and because the angle C is equal to the angle F , the side CA will take the direction FD . Now , the vertex A being at the same time on the lines ED and FD , it must be at their intersection D ( P. III . , C ...
... coincide with the vertex F ; and because the angle C is equal to the angle F , the side CA will take the direction FD . Now , the vertex A being at the same time on the lines ED and FD , it must be at their intersection D ( P. III . , C ...
Page 61
... coincide ; otherwise there would be some points in either one or the other of the curves unequally distant from the centre ; which is impossible ( D. 1 ) : hence , AB divides the circle , and also its circumference , into two equal ...
... coincide ; otherwise there would be some points in either one or the other of the curves unequally distant from the centre ; which is impossible ( D. 1 ) : hence , AB divides the circle , and also its circumference , into two equal ...
Other editions - View all
Elements of Geometry and Trigonometry: From the Works of A. M. Legendre Adrien Marie Legendre,Charles Davies No preview available - 2016 |
Common terms and phrases
ABē ABCD ACē adjacent angles altitude angle ACB apothem Applying logarithms base and altitude centre chord circle circumference circumscribed coincide cone consequently convex surface corresponding cosec Cosine Cotang cylinder denote diameter distance divided draw drawn edges equally distant feet find the area Formula frustum given angle given line greater hence homologous hypothenuse included angle interior angles intersection less Let ABC log sin logarithm lower base mantissa mean proportional measured by half number of sides opposite parallel parallelogram parallelopipedon perimeter perpendicular plane MN polyedral angle polyedron prism PROPOSITION proved pyramid quadrant radii radius rectangle regular polygon right-angled triangle Scholium secant segment semi-circumference side BC similar Sine slant height sphere spherical angle spherical polygon spherical triangle square straight line Tang tangent THEOREM triangle ABC triangular prisms upper base vertex vertices whence
Popular passages
Page 28 - If two triangles have two sides of the one equal to two sides of the...
Page 100 - The area of a triangle is equal to half the product of its base by its altitude.
Page 99 - The area of a parallelogram is equal to the product of its base and its height: A = bx h.
Page 59 - A chord is a straight line joining the extremities of an arc.
Page 124 - If two polygons are composed of the same number of triangles, similar each to each and similarly placed, the polygons are similar.
Page 214 - A sphere is a solid bounded by a curved surface, every point of which is equally distant from a point within called the center.
Page 43 - C' (89) (90) (91) (92) (93) 112. In any plane triangle, the sum of any two sides is to their difference as the tangent of half the sum of the opposite angles is to the tangent of half their difference.
Page 52 - If the product of two quantities is equal to the product of two other quantities, two of them may be made the extremes, and the other two the means of a proportion.
Page 123 - Similar triangles are to each other as the squares of their homologous sides.
Page 182 - The upper end of the frustum of a pyramid or cone is called the upper base...