Elements of Geometry and Trigonometry |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Common terms and phrases
ABCD adjacent altitude base become Book called centre chord circle circumference circumscribed common cone consequently construction contained corresponding cosine Cotang cylinder described determine diameter difference distance divided draw drawn equal equations equivalent expressed extremities faces feet figure follows formed four frustum give given gles greater half hence homologous hypothenuse included inscribed intersection less let fall logarithm manner means measured meet middle multiplied number of sides opposite parallel parallelogram parallelopipedon pass perimeter perpendicular plane polygon prism PROBLEM Prop proportional PROPOSITION pyramid quantities radii radius ratio reason rectangle regular remaining right angles Scholium segment sides similar sine solid solid angle sphere square straight line suppose taken tang tangent THEOREM third triangle triangle ABC unit vertex whole
Popular passages
Page 19 - If two triangles have the three sides of the one equal to the three sides of the other, each to each, the triangles are congruent.
Page 232 - ... the logarithm of a fraction is equal to the logarithm of the numerator minus the logarithm of the denominator.
Page 11 - A right-angled triangle is one which has a right angle. The side opposite the right angle is called the hypothenuse.
Page 168 - The radius of a sphere is a straight line drawn from the centre to any point of the surface ; the diameter or axis is a line passing through this centre, and terminated on both sides by the surface.
Page 31 - Hence, the interior angles plus four right angles, is equal to twice as many right angles as the polygon...
Page 18 - America, but know that we are alive, that two and two make four, and that the sum of any two sides of a triangle is greater than the third side.
Page 20 - In an isosceles triangle the angles opposite the equal sides are equal.
Page 86 - The areas of two triangles which have an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles. A D A' Hyp. In triangles ABC and A'B'C', To prove AABC A A'B'C' A'B' x A'C ' Proof. Draw the altitudes BD and B'D'.
Page 159 - S-ahc be the smaller : and suppose Aa to be the altitude of a prism, which having ABC for its base, is equal to their difference. Divide the altitude AT into equal parts Ax, xy, yz, &c. each less than Aa, and let k be one of those parts ; through the points of division...
Page 64 - To inscribe a circle in a given triangle. Let ABC be the given triangle. Bisect the angles A and B by the lines AO and BO, meeting at the point 0.