A course of geometrical drawing |
What people are saying - Write a review
We haven't found any reviews in the usual places.
Other editions - View all
Common terms and phrases
angle contained angles to B L apply axis base Bisect called centre circumference cone construction cutting describe a circle describe an arc determine diagonal difference divided draw a line drawn elevation ellipse equal explained expressed extremities feet figure fourth fraction Geometry give given angle given circle given line given point greater horizontal plane inches long inclined at 60 indices intersection Join Let A B line A B lines parallel marked means measure meeting miles object observed obtain original passing pentagon perpendicular plane containing plane inclined plane of projection polygon position practical primary division Prob PROBLEM produce proportional radius real length represent respectively right angles scale sector shown sides situated square student supposed surface tangent term third touching traces transverse distance triangle units vertical plane yards
Popular passages
Page 4 - When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is called a right angle; and the straight line which stands on the other is called a perpendicular to it.
Page 14 - Through a given point to draw a line parallel to a given straight line. Let C be the given point, and AB the given line.
Page 6 - Circle is a plane figure bounded by one uniformly curved line, bed (Fig. 16), called the circumference, every part of which is equally distant from a point within it, called the centre, as a.
Page 6 - Hexagon, of six sides; a Heptagon, seven; an Octagon, eight; a Nonagon, nine ; a Decagon, ten ; an Undecagon, eleven ; and a Dodecagon, twelve sides.
Page 5 - Upon a given straight line to describe a segment of a circle, which shall contain an angle equal to a given rectilineal angle.
Page 42 - The projection of a line upon a plane is the locus of the projections of all points of the line upou the plane.
Page 62 - ... quarter of an inch in depth at several times, allowing sufficient intervals for the fluid to stain the stone in that plane, 4, 3, 2, 1, it has fallen to at the last abstraction. These stains will present a series of horizontal lines or contours, 4, 3, 2, 1, all round the surface of the stone ; and if we examine the stone thus prepared, looking down upon the top, we shall see that the steepness and REPRESENTATION OF THE GROUND.
Page 75 - IF two parallel planes be cut by another plane, their common sections with it are parallels.* Let the parallel planes AB, CD be cut by the plane EFHG, and let their common sections with it be EF, GH ; EF is parallel to GH.