Page images
PDF
EPUB

PROPOSITION XI. THEOREM.

338. In any triangle, if a medial line be drawn from the vertex to the base:

I. The sum of the squares on the two sides is equivalent to twice the square on half the base, increased by twice the square on the medial line;

II. The difference of the squares on the two sides is equivalent to twice the product of the base by the projection of the medial line upon the base.

B

A

[blocks in formation]

In the triangle ABC let A M be the medial line and MD the projection of A M upon the base B C. Also let A B be greater than A C.

[blocks in formation]

2

Then A B2 = BM2 + A M2 + 2 BMX MD,

§ 336

(in any obtuse ▲ the square on the side opposite the obtuse is equivalent to the sum of the squares on the other two sides increased by twice the product of one of those sides and the projection of the other on that side);

2

and AC2 = MC2 + AM2 - 2 MCX MD,

§ 335

in any ▲ the square on the side opposite an acute is equivalent to the sum of the squares on the other two sides, diminished by twice the product of one of those sides and the projection of the other upon that side).

Add these two equalities, and observe that B M = M C.

2

Then A B2 + A C2 = 2 B M2 + 2 A M2.
Ꭺ Ꭺ

Subtract the second equality from the first.

[merged small][merged small][ocr errors][merged small]

PROPOSITION XII. THEOREM.

339. The sum of the squares on the four sides of any quadrilateral is equivalent to the sum of the squares on the diagonals together with four times the square of the line joining the middle points of the diagonals.

[blocks in formation]

In the quadrilateral A B CD, let the diagonals be AC and B D, and FE the line joining the middle points of the diagonals.

We are to prove

A B2 + B C2 + C D2 + DÃ2 = A C2 + B D2 + 4 E F22.
Draw BE and D E.

[blocks in formation]

(the sum of the squares on the two sides of a ▲ is equivalent to twice the square on half the base increased by twice the square on the medial line to the base),

and

2

CD2 + DÃ2 = 2 (4,C)2 + 2 DE2.

Adding these two equalities,

A B2 + B C2 + C D2 + DÃ2 = 4

But

A
2

§ 338

[ocr errors]

+ 2 (B E2 + D E2).

[blocks in formation]

(the sum of the squares on the two sides of a ▲ is equivalent to twice the square on half the base increased by twice the square on the medial line to the base). Substitute in the above equality for (BE + DE2) its equivalent;

then AB2 + BC2 + CD2 + DÃ2 = 4

[ocr errors]

2

+4 EF2

[blocks in formation]

340. COROLLARY. The sum of the squares on the four sides of a parallelogram is equivalent to the sum of the squares on the diagonals.

PROPOSITION XIII. THEOREM.

341. Two triangles having an angle of the one equal to an angle of the other are to each other as the products of the sides including the equal angles.

[blocks in formation]

(A having the same altitude are to each other as their bases).

[blocks in formation]

(A having the same altitude are to each other as their bases).

[blocks in formation]

§ 326

$ 326

Q. E. D.

PROPOSITION XIV. THEOREM.

342. Similar triangles are to each other as the squares

[merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small]

Let the two triangles be AC B and A'C' B'.

[blocks in formation]

(two are to each other as the products of their bases by their altitudes).

[blocks in formation]

PROPOSITION XV. THEOREM.

343. Two similar polygons are to each other as the squares on any two homologous sides.

[merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

Let the two similar polygons be A B C, etc., and

[blocks in formation]

From the homologous vertices A and A' draw diagonals.

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small]

(similar polygons have their homologous sides proportional);

[blocks in formation]

The AABC, ACD, etc., are respectively similar to A'B'C',

A' C' D', etc.,

$294

(two similar polygons are composed of the same number of similar to each

other and similarly placed).

[merged small][ocr errors][merged small][ocr errors][merged small][merged small]

(similar ▲ are to each other as the squares on their homologous sides),

[blocks in formation]
« PreviousContinue »