I. 2. yards. 3. EXAMPLES. Find the area of a square whose side is 14 ft. 6 in. Find the area of a square field whose side is 396 Find the expense of boarding a square floor whose side is 16 ft. 9 in., at 41d. per yard. Ans. 11s. 8d. 4. Find the rent of a square field whose diagonal is 7 chns. 15 lks., at 45 shillings per acre. Ans. £5. 15s. old. 5. The area of a square field is 208.5.0.6 square feet; find the diagonal. Ans. 20 ft. 5 in. 6. The cost of carpeting a square floor at 3s. 6d. per square yard, amounted to £9. 35. 11d.; find the side of the square. Ans. 7 yards. THE RECTANGLE. IV. To find the area of a rectangle. Multiply the length by the breadth. Note. The area divided by the length gives the breadth; and the area divided by the breadth gives the length. Ex. I. Find the cost of carpeting a rectangular floor whose length is 19 ft. 6 in., and breadth 12 ft. 3 in., at 3s. 6d. per square yard. Ex. 2. Find the rent of a field whose length is 12 chns. 45 lks., and breadth 8 chns. 25 lks., at 50 shillings per acre. Ex. 3. The area of a rectangular field is 5 a. 1 r. 9 P., and one side is 375 links; find the other side. 5 I 9 21 40 849 625 4245 1698 5094 375) 530625 (1415 links=311'3 yards. 375 1556 1500 562 375 1875 1875 EXAMPLES. I. How many square yards are there in a rectangle whose length is 20 ft. 3 in., and breadth 12 ft. 9 in. ? Ans. 281 2. Find the area of a rectangle whose sides are 1234 Ans. 28 a. 3 r, 30 p. nearly. and 2345 links. 3. A line is drawn from an angle of a rectangle to the middle of one of the opposite sides. What is the ratio of the two parts into which the rectangle is divided? Ans. As 3 to I. 4. The area of a rectangle is 10 a. 2 r. 35 p., and one side is 192 yards; find the other side. Ans. 269 yards. 5. The breadth of a rectangular field is 66 yards; what length must be cut off to contain 1 acres? Ans. 110 yards. 6. The length of a rectangular field is 6 chns. 20 lks., and the breadth 5 chns. 14 lks.; find the rent at 30 shillings per acre. Ans. £4. 15s. 7d. Let ABC be a triangle, of which the base is AB, and perpendicular CD. V. To find the area of a triangle when the base and perpendicular are given. Multiply the base by the perpendicular and divide by 2. |