6. But by example (3) 7.f = 22 √ x2± a2 F 4 (x + √ x2 ± a2) + C = x23 √ x2 + a2 + 3a2, 3a2 dx VEITS VE() u = X3 1. Let x u' = z vr±a2 7/log. (x + √x2 ± a2) √ x2± a2± 26 dx √ x2 + a2 = √x2 + a2 2. Let When m is even du = When m is odd Similarly ax 4. a2. x2 4 2 a2 . "SV==@= √== "" { ++++++ a2 a2 5.3 5 3 1 · · log. (x + √x2 + a2) + C x dx 8. x2±a2 x2 + a2 ® √ √ = ± @ = V Z ± e { Z = 6.4.2 7.5 And generally, if x x √ x2 + a2 ... (m-1) (m 3). m (m-1) (m — 4) Next, to integrate du = m - u = √ x2± a2 3.1 xam 4.2 1) (m m. (m du = α u = sin.-1 ... dx X α xdx √a2-x2 xm-1 m 3.1.a2 4.2.1 { 3.1.2.x 4.2.am-1 S xm-1 m 3) 5. a2. 2-3 6.4 + + ... + 3.1.a1 } + c + 3u 2) 5.3.1.a 5.3.a1.x 6.4. 6.4.a. x2 x dx √ a2 — x2 then by VI. Chap. I. 3.1. + log.(x+√x2+a3)+C (m—1)x1—3a2 (m—1) (m—3)x1—5a*— m (m · 2) (m — x2 +C, the radius being unity. then u = - √a2x2 + C. a 4.2 C 1.a 5.3. ± 2 S 6.4.2 log. 6.4.2.a +7.5. (m—1)xm—3α2, (m—1) (m—3)xm-5α. ± m (m-2) ·m (m-2) (m ·4) + log. (x+a+a2) + C + 4) + 3. Let Let .. du = 1. Let Let = u = 2. Let To integrate du= y= == du = Integrating by parts, y = du = dy a2 + 2= = du = √ a2 + x2 a2 x Integrating by parts y2 dx xm Va2 x2 The process is precisely analogous to that employed in the last case dx a2 x - y3 dy Vy2-I dx 1 dy ་ ydy √y — 1 3. 1 ર 3.1 {-2}- Ad log. (1+VI+) 4. 2.x2 4.2 Let 2. In like manner all integrals of the form dx xVx2 -a t du = x2 dx √ a2 + x2 = 4x+ x dx Va2x2, xTM dx √x2 - a2. which are 1 3 = — (a2 + z2) } — 4 3.y + 3 : 2 } + . dx x % (@2 + x2) ; — — √ √ Œ2 + ** = { - 4 S 4 which are both known forms. log.(y+√y®—1)+C 3.1 ર ++ 1}+ 3-log. (1 + √ 122)+Cc 4.2.2*3+ 3.1 4.2 a1 4.2 Multiply both numerator and denominator by √a2 + x2 x2 dx (a2 + x2) Va2 + x2 = log. (x + V@++} + © 2 1 { 3 The preceding integral may be found in a manner somewhat different du = x2 dx va2 + x2 a2 x2 dx + f Ja2 + a2 4 log. (x +√a2+x2) + C 3. Let Let .. du = 1. Let Let du= 2. Let To integrate y= du = Integrating by parts, du = dx x5 √1 + x2 ydy u = f − y3 • √ i + y2 Integrating by parts Va2 + x2 a2 x dy du = y= X du == dy dx xm Va2 The process is precisely analogous to that employed in the last case dx XVI-2 == √1 + y2 { 2/2 - 3:3} - 12 log. (y +√l + 3o) 3. у 3.1 4 22 dx dx x2 - y3dy = dy= and — yo dy = dx Let 1. may be determined. To integrate - y dy In like manner all integrals of the form dx xmx2 integrating by parts = du = x2 dx √ a2 + x2 x — (a2 + x^ 3 x dx Va2x2, = x = % («2 + x2) 4 which are both known forms. Ꮖ = — (0° + 29 (a2 3 3 3 which are both known forms. 2, du x3 dx va2 = x22 4.2. 1 3 — ƒ dx (a2 + x2) √ at 4 a2 x 4.2. a2 Multiply both numerator and denominator by a2 + x2 x2 dx (a2 + x2) √ a2 + x2 + x2 น log. (x + √ a2 + x2)} + c The preceding integral may be found in a manner somewhat different du = x2 dx √ a2 + x2 a2 a1 .log. (x + √ a* +2°) +C 4.2 |