| Charles Hutton - Measurement - 1788 - 728 pages
...breadth. But the area is equal to the number of fquares or fuperficial meafuring units ; and therefore the area of a rectangle is equal to the product of its length and breadth. Again, a rectangle is equal to an oblique parallelogram of an equal length and... | |
| Euclid, Dionysius Lardner - Euclid's Elements - 1828 - 542 pages
...magnitudes, and subtract half the difference from half the sum, and the remainder is the less. (262) Since the area of a rectangle is equal to the product of its sides, it follows that if the area be divided by one Me the quote will be the other side. It is scarcely... | |
| Charles Davies - Geometrical drawing - 1840 - 262 pages
...the unit of the number which expresses the area, is a square of which the linear unit is the side. 8. The area of a rectangle is equal to the product of its base by its altitude. If the base of a rectangle is 30 yards, and the altitude 5 yards, the area will... | |
| Charles Davies - Geometrical drawing - 1846 - 254 pages
...It is a square, of which the linear unit is the side. 10. How do you find the area of a rectangle ? The area of a rectangle is equal to the product of its base by its altitude. If the base of a rectangle is 30 yards, and the altitude 5 yards, the area will... | |
| Charles Davies - Logic - 1850 - 390 pages
...second shall decrease according to the same law ; and the reverse. term. GEOMETRY. 249 For example : the area of a rectangle is equal to the product of its base and altitude. Then, in the Example rectangle ABCD, we have Area = AB x BC. Take a second rectangle EFGH, having a... | |
| Charles Davies, William Guy Peck - Mathematics - 1855 - 628 pages
...bases : generally, any two rectangles are to each other as the product of their bases and altitudes. The area of a rectangle is equal to the product of its liase and altitude. The area of a rectangle is also equal to the product of its diagonals multiplied... | |
| Adrien Marie Legendre - Geometry - 1863 - 464 pages
...the rectangle AEGF will be the superficial unit, and we shall have, AB x AD ABCD = AB x AD : hence, the area of a rectangle is equal to the product of its base and altitude ; that is, the number of superficial units in the rectangle, is equal to the product of the number... | |
| Evan Wilhelm Evans - Geometry - 1862 - 116 pages
...VII) ; that is, the two diagonals bisect each other in E. Therefore, the diagonals, etc. THEOREM XVI. The area of a rectangle is equal to the product of its base by its altitude. Let ABCD be a rectangle. It is to be proved that its area is equal to the product... | |
| Charles Davies - Mathematics - 1867 - 186 pages
...law of change, the second shall decrease according to the same law ; and the reverse. For example : the area of a rectangle ^ is equal to the product of its base and altitude. Then, in the rectangle ABCD, we have Area=AB x BO. Take a second rectangle EFGII, having a longer base... | |
| Edward Brooks - Geometry - 1868 - 284 pages
...other. It is one of the most interesting and practical books of Geometry. AREA OF POLYGONS. THEOREM I. The area of a rectangle is equal to the product of its base and altitude. Let ABCD be a rectangle; then will its area be equal to the product of its base and altitude. For,... | |
| |